Strictly Temporally Periodic Points in Cellular Automata

نویسندگان

  • Alberto Dennunzio
  • Pietro Di Lena
  • Luciano Margara
چکیده

We study the set of strictly temporally periodic points in surjective cellular automata, i.e., the set of those configurations which are temporally periodic for a given automaton but are not spatially periodic. This set turns out to be residual for equicontinuous surjective cellular automata, dense for almost equicontinuous surjective cellular automata, while it is empty for the positively expansive ones. In the class of additive cellular automata, the set of strictly temporally periodic points can be either dense or empty. The latter happens if and only if the cellular automaton is topologically transitive.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Periodic Points for onto Cellular Automata

Let φ be a one-dimensional surjective cellular automaton map. We prove that if φ is a closing map, then the configurations which are both spatially and temporally periodic are dense. (If φ is not a closing map, then we do not know whether the temporally periodic configurations must be dense.) The results are special cases of results for shifts of finite type, and the proofs use symbolic dynamic...

متن کامل

Cellular Automata and Models of Computation

Preface This issue contains seven papers presented during the " Third Symposium on Cellular Automata– Journées Automates Cellulaires " (JAC 2012), held in La Marana, Corsica (France) in the period Septem-ber 19th–21th, 2012. The scope of the symposium is centered on Cellular Automata (CA), tilings and related models of computation. Topics of interest include (but are not limited to) algorithmic...

متن کامل

Jointly Periodic Points in Cellular Automata: Computer Explorations and Conjectures

We develop a rather elaborate computer program to investigate the jointly periodic points of one-dimensional cellular automata. The experimental results and mathematical context lead to questions, conjectures and a

متن کامل

Periodic Points and Entropies for Cellular Automata

For the class of permutive cellular automata the number of periodic points and the topological and metrical entropies are calculated.

متن کامل

Density of periodic points, invariant measures and almost equicontinuous points of Cellular Automata

Revisiting the notion of μ-almost equicontinuous cellular automata introduced by R. Gilman, we show that the sequence of image measures of a shift ergodic measure μ by iterations of such automata converges in Cesaro mean to an invariant measure μc. If the initial measure μ is a Bernouilli measure, we prove that the Cesaro mean limit measure μc is shift mixing. Therefore we also show that for an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012